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We give sufficient conditions for asymptotic stability relative to a part of the 
variables. We investigate the question of the invertibility of certain proved and 
well-known theorems of Liapunov’s second method. With the aid of the Liapunov 

function method we give the necessary and sufficient conditions for the bounded- 

ness of solutions relative to a part of the variables. 

1. Let us consider a system of differential equations of perturbed motion 

x’ = x(t, x) (X (h 0) f 0) (1.1) 
x = (% * - *, XT%), x = (Xl,. . ., X,) 

We shall study the question of the stability of the unperturbed motion x = 0 relative 

to 51, . . . . 5, (0 < m < n).Denoting these variables by yi = xi (i = 1, . . . . m), 
and the remaimng by ZJ = Xm+j (j = 1, . . . , n - m = p), i.e. x = (yr, . . . . y,, 
z,, . . . . zp) we introduce the notation 

llYII= (iy,‘).‘, 
i=l 

,,z(, +jy 
j=l 

II x Ii = ( i xil)l” = (II Y 112 + II z 112Y* 
i=1 

We assume that: 
a) in the region 

t>o, llYII<N>O, 0411~11< + ‘= (1.2) 

the right hand sides of system (1.1) are continuous and satisfy the conditions for the un- 
iqueness of the solution; 

b) the solutions of system (1.1) are &-extendable; this means that any solution x (t) 
is defined for all t > 0 for which /j Y (t) iI < ff. 

By x = x (t; t,, x0) we denote the solution of system (1.1) defined by the initial 

conditions x (t,; t,, x0) = x0. 
Theorem 1. If there exists a function V (t, x) satisfying the conditions: 

1) 
JJ (G x) > a (II Y II) (1.3) 

where a (r) is a continuous monotonically-increasing function and a (0) = 0; 
2) Ir < 0 by virtue of (1.1) and for any q > 0 

v-(z, x)& - ???-(T) (1.4) 

follows from l’ (r, x) > 7, II y Ij < H, where 
cc 

s 
m,(a) d-6 = + 00 (1.5) 

0 
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then the motion x = Cl is asymptotically y-stable. If, 
function V are (0 -periodic in t (or are independent of 
bility is uniform in {to, x0}. 

further, system (1.1) and the 
t), then the asymptotic y -sta- 

Proof. The hypotheses of the y -stability theorem [l] are satisfied, therefore, for 

any E E (9, H), t,, > 0 we can find 6 (e, to) > 0 such that from llxOil < 6 it follows that 

II y (t, t,, x,1 j/ < e for all t > t,. Let us show that when II x0 (1 < 6 , 

firn_V (t, x (t; to, x0)) = 0 (W 

Otherwise, because v’ < 9 we would haveV (t, x (t; t,,, x0)\ > 9 > 0 and from 

would follow 

v (t, x (t; to, x0)) = v (to, x0) + s V’ (z, x (C ZO,XO))d~ (1.7) 

to 
t 

0 < v (t, x (t; to, x0)) < v (to, XII) - 
s mn (z) c+c 
to 

which is impossible for t sufficiently large because of (1.5). The asymptotic y -stabi- 
lity of the motion x = 0 follows from (1.6). When system (1.1) and the function V are 

OF periodic in t, the required uniformity follows from Theorem 1 of r2]. 
Theorem 2. If there exists a function V (t, X) satisfying the conditions: 

2) (1.4) and (1.5) follow from 
k 

2 xi2 > q, II Y II G H 
i==l 

for any q > 0 , then the motion x = 0 is asymptotically y-stable uniformly in x,, 

from the region (*) 
k 

~xioz < a27 
i=l 

-~~<~j,,<+oo (j=k+l,..., n), 6=const>O (1.9) 

Proof. Set 5 = b-1 (a (H;). If (1.9) is satisfied, 

whence /I y (t; t,, x0) 11 < H for 8 > to and, consequently, the solutions (t: to, x,Jis de- 
fined for all t E [to, 00). For every E > 0, to > 0 there exists, by virtue of (1. 5) 7’ (e, 
to) > o such that for rl = h s 0-l (0 (F)) 

iOfT 

s 
‘n/, (t) dr = a (H) (1.10) 

to 

If we assume that V (t, x (I’; to. x,J) > n (E) for all t E (t,,, t,- + l’;,then by virtue of (1.4) 
and (l.lO), from (1.7) would follow 

*) This means that for a certain 6 > L, there exists, for any F > 0, to > 0 y a 2’ (c. I,,);i 0 

such that 1) y(t; to, x0\ 11 < t: for all t > f, + T, if x,, lies in region (1.9). 
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fo+T 

0 < a (E) -< V (to + T, x (to + T; to, x1)) < V (to, XO) - s mh (T) dz < a (H) - 

to 
fo+T 

- s m,, (T) dz = C 

to 
which is impossible. Consequently, for some t, e (to, to + T) we have I’ (t*, x (t,; 
t ,,, %I) < a (ej.Since I” < 0. then for t > t* 

u (11 y (f; to, xi) 11) < V (t, s (6 h, x0)) < v (t*, x (t,; h x0)) < a (8) 

whence I! y (t; to, x,) ]I < E for all t > to + T > t, a The theorem is proved. 
Note. The identities 

xi (t, 0, . . .) 0, Zk.fl, . . ., .c,) = 0 (i = 1,. . ., rn) 

are necessary for the fulfillment of the hypotheses of Theorem 2 and are proved analo- 

gously to [4]. 
Theorems 1 and 2 generalize the results of [3]. When m < TZ these theorems cannot 

be inverted even for autonomous systems which are asymptotically y -stable uniformly 
in {t,, x,} as shown by the following example. 

Consider a system [4] 

s’=-Scp(Y), y’ = 0 (1.11) 

in which cp (Y) is a smooth function, where cp (Y) > 0 for 1 Y 1 < 1, cp (Y) _= 0 for ) y 1 > 1. 
1. The solution 2 = Y = Oof system (1.11) is asymptotically z-stable uniformly in 

{to, 507 YJ r41. 
Let us show that a function V satisfying the hypotheses of Theorem 1 (*) does not exist 

for system (1.11). We assume the contrary: suppose that V(t, I, Y) > a (1 I I),but that 
1” (7, x, Y)<- nl,, (r) follows from V (t, Z, Y) > 11 > 0, 1 z I x H and (1.5) holds. In the 

region 1 y I>, 1, V’ E 3V / at. Because this region is convex in t we have ([53, p. 154) 

t a 
V (t, 5, Y) = 

s 
x V (~3 5, Y) dz + ‘4~ (2, Y) 

0 

whence follows, for z # 0 
t 

0 < V (t. I, y) < - 
s maclxl) (T) dr + 9 (2, Y) 
0 

which is impossible for t sufficiently large. 
Under the assumption of continuity and boundedness of the derivatives L9Xi / azj a the- 

orem inverse to Theorem 1 was stated in [3] for the case m = n . If the derivatives 
aXi I axi are continuous, but not bounded, the inverse theorem does not hold, as shown 
by the example of the scalar equation [8] 

x’ = - ST (t, 5) (1.12) 

in which q is a smooth function, and (r = 1 for 1 x 1 < cet and q, ==0 foi 1 .z 1 > 2~~‘. 
The solution T == 0 of Eq. (1.12) is asymptotically stable l-63. Let us show that a fun- 
ction V (t, x)satisfying the hypotheses of Theorem 1 does not exist for this equation. We 
assume the contrary: suppose that V (t, x) > a (Ix]), but that V’ (t, x) < - m,, (~)follows 

l ) The proof is carried out analogously for Theorem 2. 
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from V (T, I) > q > 0, 1x1 < H. and (1.5) holds. In the region ZC-’ < 1 x j ~< H we have 

1” E dV/ dt, therefore [S], 

(z (5) = -In (‘id 1 cc I) 

which, by virtue of (1.5), is impossible for t sufficiently large. 

2. Theorem 3. If in the region 

t 20, II x II s 13 > 0 

the right hand sides of system (1.1) are uniformly bounded 

llX(t, x)II G N (N = consl > 0) 

(2.1) 

(2.2) 

and if there exists a function V (t, X) such that Ii > 0, while its derivative by virtue 

of system (1.1) 
V’ CL, x) 4 - c (il x II) (X3) 

(c (r) is a function of the type of & (r)), then V (t, s) is a positive-definite function. 

Proof. From (2.2) it follows that the solution x (l: I,,. x,,i with initial point !to. xn) 

from the region 
:j x ;I < Ill _- ‘)/3 II, 1 > 0 (2.4) 

is defined for 0 < t - t,, I_’ II, (2:v1 and satisfies the inequality 

;; x (t; to, x0) /I< IZ (2.3) 

Let us show that I’ is a function which is positive definite in region (2.4). We assume 

the contrary: suppose that for some F,,. U <t.,, <‘: ll,.for any arbitrarily small 6 > (1 we 

can find a point (t,, S*i, I* > (1, Fn \ 11 x+ /i ‘... /!l$for which I7 (I,. h61 < 8.We have 

From (2.2) and inequality 11 x* /I > F’o follows 

By virtue of (2.6) and (Z-7), 

follows from (1.7) for the instant t t, + F,, I (2,V) (in view of (2. 5) the solution is still 

defined at this t ), which is impossible. The theorem is proved. 

Note. Condition (2.2) is satisfied, for example, if system (1.1) is periodic in t 

(or autonomous). 

Lemma. If there exists a function V (t, x) such that V >, 0 in region (2. l), while 

I,” < I), the inequality 1’ (I, X) > o is fulfilled at each point (k, x) at which V’ (t, X) < 0. 

Proof. If it should be that at some point (t*, x*) we have V’ (f*, s*) < o but 

I/ (t*, x*) 0, for a sufficiently small P > o , v < o would follow from 
1.-I-E 

* 1. (t* -1 F, x (t* -t (1; t,, x*)) = IJ’(t*, s*) -/- 
s 

T.‘(z, x (z; t,, x,)) CjT = 1.’ (f,, x,) 8 + 0 (F) 

t* 
which is impossible. 
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Theorem 4. If in region (2.1): 

1) V (t, x) > 0 
2) the function v is periodic in t (or is independent of time) 

3) v’ (t, x) < 0 follows from 11 x 11 # 0 , 
then v is a positive-definite function. 

Proof. By virtue of the lemma, from conditions (1) and (3) it follows that 1’ (t* 
x)> 0 for I[ x I( # u.Therefore, the positive definiteness of function V follows from cond- 

ition (2) u]. 
Note. Condition (3) is fulfilled, for example. if V’ is a negative-definite function. 
Theorem 4 is not true if we omit condition (X), as the following example shows: for 

the equation zV = -xe’ the constantly-positive function v = $e-t, which is not positive 

definite has a negative-definite derivative. 

The following is well known: 
Theo r e m A [8 - IO]. If there exists a function v (t, x) satisfying the conditions 

a (II Y II) 4 v (4 x) s b (II x II) 
in region (1.2) and if (2.3) holds, the motion x = 0 is asymptotically y-stable uni - 
formly in {to, X0}. 

From Theorems 3 and 4 it follows that if a function v exists satisfying the hypotheses 

of Theorem A and if one of the next two conditions are fulfilled: either (2.2) holds (in 

region (2.1)) or V is periodic in t, then the function v is necessarily positive definite 

and, consequently, the motion x = 0 is asymptotically Liapunov-stable (uniformly in 

{to7 x,} PI). Thus, a function V, which is not positive-definite in all the variables 
and which satisfies the hypotheses of Theorem A (for example yhen there is no asympt- 

otic Liapunov-stability), can exist only when system (1.1) and function v depend “ess- 
entially” on time. For example, for the system x’ = --5 + &, y’ = - z - ye-’ 
the r-positive-definite function V z-1 x2 + y”e-‘, admitting of an infinitesimal upper 
bound, is not positive-definite in (x, y) but has a negative-definite derivative. 

3. The Liapunov function method can be applied to investigate the boundedness of 
solutions Cl1 - 141. Analogous results hold in the problem of y-boundedness. 

We assume that the right hand sides of system (1.1) are continuous and satisfy the con- 

ditions for the uniqueness of the solution in the region 

O,tIlx(l<+ WY t,,o (3.1) 

moreover, it is not necessary that X (t, 0) sz 0; here z -extendability signifies that 
any solution X (t; to, x,,) is defined for all t > 0 for which11 y (t; to,X,) Ii r, $_ co. 

Definitions. The solutions of system (1.1) are said to be: 

a) y-bounded if for any t, 2 0, x0 we can find N (tot x,,)> 0 such that fort 2 to 

II Y (t; to, xd II 6 N (3.2) 

b) y-bounded uniformly in to if in (a) we can choose N (x0) > 0 independent of 
t, for any x0 ; 

c) y-bounded uniformly in .Y, if for any t,, > 0 and a compactum K of the space 

{ X1, . ..) .x,, } we can find N (t,; K) > 0 such that (3.2) follows from x0 E K, 

t ,> i” ; 
d) y-bounded uniformly in (to, x,,} if in (c) we can choose N (K) > 0 independ- 

ent of to for any compactum K . 
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Theorem 5. In order for the solutions of system (1.1) to be: 
1) y-bounded, it is necessary and sufficient that there exists a function V (t, X) sat- 

isfying inequality (1.3) in region (3.1). where a (11 y /I) -+ + 00 as 11 Y I\ * 00 and the 
function V (t, x (t; to, x0)) does not grow for any solution x (t; t,, x0) ; 

2) y -bounded uniformly in t,, it is necessary and sufficient that there exists a func- 

tion V satisfying the conditions (1) and, further. the inequality 

v (G x> < w (x) (3.3) 

where W (x) is a function (discontinuous, in general) which is finite at every point x ; 
3) y-bounded uniformly in x0, it is necessary and sufficient that there exists a funct- 

ion v satisfying the conditions in (1) and such that for any compactum K 

v (& x) < ‘PI< (0 for XEK, r>O (3.4) 

4) y-bounded uniformly in {t,, x,},it is necessary and sufficient that there exists a 
function v satisfying the conditions in (1) and the inequality 

v U, x) < b (II x II) (3.5) 

where b (r) is a function increasing monotonically for r E [O, co) (*). 
Proof, 1) Sufficiency. For V,E V (t,, x,,) there exists N (l’(j) =N (to* xo) > o 

such that a (II y II) > V. follows from 11 y 11 > N. Further, we have 

a (II y (t; to, x0) 11) < v (t, x (t; to, x0)) < vo 

whence !! y (1; to, xu) IJ < N for t > lo. 
Necessity. The function 

v (r, x) =,9=&l Y (t + z; t, x) II (3.6) 

is defined by virtue of the Y -boundednk in region (3.1). Obviously, I’ (t, X) >,llY 11 

If tl < IA, then 

V (tl, x (h; to, x0)) = sup 11 y (ll + 7; to, x0)11 > sup 11 y (t2 + z; tn, x0)11 = k' (h, x (tr; h X(d) 
720 GO 

i. e., V (t, x (t; to, xl)) does not grow. 
2) Sufficiency. We choose N (X,J >(I such that n (11 Y 11) > u’ (~0) follows from 

11 y II> N, In this case (see (3.3)) 

whence II y (t; to, x0) 11 < N for t > t,. 
Necessity. The function V defined by formula (3.6) satisfies, in accord with De- 

finition (b), the inequality V (t, x) < N (x). 

3) Sufficiency. For every t,, and compactum Ii there exists N (to, li) >(J such 
that a (11 y 11) > ~~(t,,) follows from 1) y 11 > iv. For x,) E I<, t > to we have (see (3.4)) 

a (II y (t; to, xn) Ii)< 1. (t, x (t; to, so)) < v (to, xn) < ‘pK (t(l) 

whence IIy (t; to, XII) I/ <N. 

Necessity. The function 1’ defined by formula (3.6) satisfies for x E K the ine- 

quality V (t, x) < IV (t, I() &z ‘p,< (I) 

*) Results close to (3) and (4) of this theorem (on the sufficient conditions side) have been 
obtained by Peiffer, K. La methode directe de Liapounoff appliquee a l’etude de la sta- 
bilite partielle (Dissertation). Universite Catholique de Louvain, Faculte des sciences, 1968. 
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4) Sufficiency. For each compactum K we denote 

bK =sup[V(t, x): t>O, x~K]<sup[b(Ilxll): xEK]<+m 

There exists N (K) > 0 such that a (II y 111 > b,follows from II y II > M. Then 

a(]\ y (t; to, Xo)Ij) < v(t, X (t; h X0); < v (a* xo) < bK 

for to>O, ~OEK 

whence 11 y (t; to, x0) II < N for all t >, to. 
Necessity. For function (3.6), by selecting as compactum K the spheres I( x II = r, 

r E 10, =J), we obtain, in accord with (d), 

V(t, x) <N(K)rN(r) for x~K 

The function N (r) may be considered to increase monotonically with r E [0, m); after 
this it remains to set b (Ilxll) == N (Ilxll).The theorem is proved. 

Note. Condition (3.4) is satisfied if V (t, z)is continuous. 
E x a m p 1 e . For the mechanical system [ 1, 2, 91 

d i3T aT __:--=- 
dt i3qi hi 

having taken H = 7’ + c’ as the Liapunov function, we obtain H’ = -2f < 0. We assume 
that n n 

27’ = 2 Qj (Q)qi’Qj’),e xQis2 (a>O)v u>O 
i. I=1 i=l 

According to item (4) of Theorem 5, the solution of system (3.7) is q--bounded uni- 

formly in {to, go, 90’). Consequently, each solution{q (t), q’ (t)} is defined for t E [0, m) 

Differential inequalities and the comparison principle [15] may be applied to the Y- 

boundedness problem. Let us assume that a vector-valued function V = (VI, . . . , vk) 
exists, satisfying the conditions: 

1) V (t, x) and V’ (t, X) are continuous, 
2) for some 1 (1 & 1 < k) 

3) v’ by virtue of (1.1) satisfies the inequality 

v (t, x) < f (t, v (t, x)) 

while the vector-valued function f (t, V) is defined and is continuous in the region 

t-20, o<llvll<+ 3o 

4) each of the functions fs (s = 1, . . . . k) does not decrease with respect to v,, . .., 
V s-1, Vs+l, . . . . vk. 

We denotea = (or, .,., o[) and consider the comparison system 

0’ = f (t, 0) (3.9) 

Theorem 6. 1) If the solutions of system (3.9) are a -bounded, the solutions of 
system (1.1) are y;bounded uniformly in x0; 

2) if the solutions of system (3.9) are a-bounded uniformly in to and 

the solutions of system (1.1 are y-bounded uniformly in {to, x0}. 
Proof. By a theorem of Wazewski [16] there exists an upper integral of system 
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V (t, x (I; to, x0)) Q o+ (I; lo, wo) (3.111) 

if only V (to, x0) < 00. 

(3.9) satisfying the inequality 

1) Because V is continuous, for each compactum K 

V (t, x) < (cK (t) E max [V (t, x): I E K] for t >, 0, x E fC 

We set 00 = qx (to),thenV (to, XC,) ,< o0 for xo E K. By hypothesis there exists A ([:I, WC]) == 

A, (to) such that 

i o,+ (6 to. 00) < /I (3.11) 
S==l 

If N (Al = N, (to) > 0 is such that cj(II Y )I) > A follows from Ij y 11 > N, then from (3. 8), 

(3.10) and (3.11) we obtain 

I I 

a (11 y (t: to, x0) I\)< 2 v, (t, x (I; to, x0)) < &o,+ it; to, ofi) 5; -4 

8==1 S==, 

whence 11 y (t; to, x0) 11 < N for t > 2~1. 

2) We set hK = sup [b (11 x II): x E Kl. OS0 --DK (s --- 1, . . , k). Then the numbers A, 

and II~K can be chosen independent of t,,. The theorem is proved. 

The author thanks V. V. Rumiantsev for his advice and for attention to this work. 
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RELATIONS BETWEEN THE FIRST INTEGRALS OF A NONHOLONOMIC 

MECHANICAL SYSTEM AND OF THE CORRESPONDING 

SYSTEM FREED OF CONSTRAINTS 

PMM Vol. 36. N’3, 1972, pp.405-412 
Il. ILIEV and Khr. SEMERDZHIEV 

(Plovdiv) 
(Received December 9, 1971) 

We derive the necessary and sufficient conditions for obtaining the first integral 

of a nonholonomic system with linear homogeneous constraints from the first in- 
tegral of the corresponding system freed of constraints. We present examples. 

1, We consider a nonholonomic scleronomous mechanical system with the general- 
ized coordinates pi, q”, . . . , f, the doubled kinetic energy 2T = g+ qeh q’p and the 

force function U = U (q”). The system is subject to the n - k linear homogeneous 
constraints (I?‘~ q’” :y 0. In what follows the Greek indices h, p, v, . . . . (5 take the val- 
ues 1, 2, . . . . IL, while the Latin ones a, bT c, d take the values 1, 2, . . . . k and p, 4, 
r take k -+ 1, . . . . II. By introducing the new variables 

q.” = CI,XS’a (1.1) 

we write the equations of motion in the following form Cl]: 

Ds’” /dt = F”, DA-“’ = did f I-&dsbic 

F’ = Gd”F, = Gda~aXQx = Gdaaaxdu / dqlc 

r$ = G’lrLI’,, cb 
r a,cb = r. A, “, pua%%c” + ghaaQa,h I &pacO 

The vectors a, (aax) are called the admissible vectors of the system and satisfy the 
condition (OX% u i( = 0 (1.2) 

The matrix Gal’ is the inverse of the matrix Gab = ghp uah abp. By rX, I* y we de - 
note the Christoffel symbols of the first kind, defined by the metric tensor g+. 

We consider the case when the system moves by inertia, i.e., U = const. As was 
shown in p], in order for ?L,s*‘~ = c to be a linear integral of a nonholonomic system, 


